Issue |
MATEC Web of Conferences
Volume 35, 2015
2015 4th International Conference on Mechanics and Control Engineering (ICMCE 2015)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 4 | |
Section | Materials science and engineering | |
DOI | https://doi.org/10.1051/matecconf/20153501003 | |
Published online | 16 December 2015 |
Molecular Dynamics Simulation of Coarse-Grain Model of Silicon Functionalized Graphene
School of Physical and electronic information engineering, Ningxia Normal University, Guyuan, China
a Corresponding author: hzxsyp@163.com
The electronic transport, the storage capacity and the service life of the anode material for lithium ion batteries will be reduced seriously in the event of the material layering or cracking, so the anode material must have strong mechanical reliability. Firstly, in view of the traditional molecular dynamics (MD) limited by the geometric scales of the model of Silicon functionalized graphenen (SFG) as lithium ion batteries anode material, some full atomic models of SFG were established using Tersoff potential and Lennard-Jones potential, and used to calculate the modulus and the adhesion properties. What’s more, the assertion of mechanical equilibrium condition and energy conservation between full atomic and coarse-grain models through elastic strain energy were enforced to arrive at model parameters. The model of SFG coarse-grain bead-spring elements and its system energy function were obtained via full atomic simulations. Finally, the validity of the SFG coarse-grain model was verified by comparing the tensile property of coarse-grain model with full atoms model.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.