Issue |
MATEC Web of Conferences
Volume 34, 2015
2015 2nd International Conference on Mechatronics and Mechanical Engineering (ICMME 2015)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 4 | |
Section | Vehicle engineering | |
DOI | https://doi.org/10.1051/matecconf/20153405001 | |
Published online | 11 December 2015 |
The Mechanism Study of Alternating Arc(AC)Magnetic Levitation Induction Motor
College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
a Corresponding author: lizengcf@163.com
b fzhang@yzu.edu.cn
c zdzhu@yzu.edu.cn
Magnetic levitation (no bearings) motor by using magnetic force to make rotor suspend and drive realize its high or ultra-high speed rotating. The stator’s structure of traditional no bearing magnetic levitation motor is double winding which is polar logarithmic difference 1 of 2 sets of winding (torque winding and suspension winding) and embedded in the stator. Using two inverter respectively for the two sets of winding to go into the same frequency current in order to realize the suspension of the rotor and motor’s driven, small carrying capacity of motor’s structure, controlling complex system. This paper based on the traditional motor technology puts forward a kind of arc principle and respectively decorates two arc motors in horizontal and vertical direction symmetric to rotor according to the electromagnetic bearing suspension technology that is constituted the arc magnetic levitation induction motor. Establishing air-gap transformation regular between rotor and stator (air-gap length) motor is under the effect of interference. Based on the electromagnetic theory establishing distribution regular of the air-gap magnetic induction intensity. Virtual displacement principle is used to establish electromagnetism mathematical model and motor electromagnetism levitation. By the finite element analysis carrying on simulation research to the magnetic induction intensity, electric magnetic levitation force and distribution features of electromagnetic torque and so on.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.