Issue |
MATEC Web of Conferences
Volume 27, 2015
2015 4th International Conference on Engineering and Innovative Materials (ICEIM 2015)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 5 | |
Section | Material processing and preparation technology | |
DOI | https://doi.org/10.1051/matecconf/20152703001 | |
Published online | 20 October 2015 |
Fabrication of Glucose-Sensitive Layer-by-Layer Films for Potential Controlled Insulin Release Applications
1 Institute of Chemistry, University of the Philippines, Diliman, Quezon City, Philippines
2 Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, Philippines
a Corresponding author: tetalusan@up.edu.ph
b kenaldrenusman@yahoo.com
c lmpayawan@yahoo.com
Self-regulated drug delivery systems (DDS) are potential alternative to the conventional method of introducing insulin to the body due to their controlled drug release mechanism. In this study, Layer-by-Layer technique was utlized to manufacture drug loaded, pH responsive thin films. Insulin was alternated with pH-sensitive, [2-(dimethyl amino) ethyl aminoacrylate] (PDMAEMA) and topped of with polymer/glucose oxidase (GOD) layers. Similarly, films using a different polymer, namely Poly(Acrylic Acid) (PAA) were also fabricated. Exposure of the films to glucose solutions resulted to the production of gluconic acid causing a polymer conformation change due to protonation, thus releasing the embedded insulin. The insulin release was monitored by subjecting the dipping glucose solutions to Bradford Assay. Films exhibited a reversal in drug release profile in the presence of glucose as compared to without glucose. PAA films were also found out to release more insulin compared to that of the PDMAEMA films.The difference in the profile of the two films were due to different polymer-GOD interactions, since both films exhibited almost identical profiles when embedded with Poly(sodium 4-styrenesulfonate) (PSS) instead of GOD.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.