Issue |
MATEC Web of Conferences
Volume 24, 2015
EVACES’15, 6th International Conference on Experimental Vibration Analysis for Civil Engineering Structures
|
|
---|---|---|
Article Number | 06004 | |
Number of page(s) | 4 | |
Section | Vibration isolation and mitigation | |
DOI | https://doi.org/10.1051/matecconf/20152406004 | |
Published online | 19 October 2015 |
Application of Concrete Segment Panels for Reduction of Torsional Vibration Responses of Girder Bridges
1 Korea Institute of Civil Engineering and Building Technology, Structural Engineering Research Institute, Goyang, 411-712 Korea
2 BNG Consultants, Sungnam, 463-825 Korea
a Corresponding author: origilon@kict.re.kr
The dynamic flexural behaviour of railway bridges is influenced by the torsional behaviour, and the flexural response tends to be amplified as the flexural natural frequency (the 1st vibrational mode) and torsional frequency (the 2nd vibrational mode) are adjoining. To avoid this phenomenon, the installation of concrete segment panels was considered for the reinforcement of torsional stiffness by connecting bottom flanges between girders. This alternative can increase the torsional stiffness by providing the restraint in torsional vibration and reduce the influence of torsional behaviour on the amplification of flexural responses. This study investigates the effect of the concrete segment panels on the control of torsional dynamic responses and on the increment of torsional frequency. The excitation tests on a full-size bridge specimen with 30 m span length were conducted with respect to the installation length of concrete panels up to 7 m from each ends. The results show that the installation of concrete segment panel augments the torsional frequency up to 22 % while the flexural frequency keeps its original value. It is concluded that the dynamic behaviour of girder bridges can be controlled by the adjustment of installation length of concrete panels, thereby reducing the torsional responses.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.