Issue |
MATEC Web of Conferences
Volume 24, 2015
EVACES’15, 6th International Conference on Experimental Vibration Analysis for Civil Engineering Structures
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 12 | |
Section | Keynote lectures | |
DOI | https://doi.org/10.1051/matecconf/20152401003 | |
Published online | 19 October 2015 |
Structural Identification and Monitoring based on Uncertain/Limited Information
Institute of Structural Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich
a Corresponding author: chatzi@ibk.baug.ethz.ch
The goal of the present study is to propose a structural identification framework able to exploit both vibrational response and operational condition information in extracting structural models, able to represent the systemspecific structural behavior in its complete operational spectrum. In doing so, a scheme need be derived for the extraction of salient features, which are indicative of structural condition. Such a scheme should account for variations attributed to operational effects, such as environmental and operational load variations, and which likely lie within regular structural condition bounds, versus variations which indicate short- or long-term damage effects. The latter may be achieved via coupling of sparse, yet diverse, monitoring information with appropriate stochastic tools, able to infer the underlying dependences between the monitored input and output data. This in turn allows for extraction of quantities, or features, relating to structural condition, which may further be utilized as performance indicators. The computational tool developed herein for realizing such a framework, termed the PCE-ICA scheme, is based on the use of Polynomial Chaos Expansion (PCE) tool, along with an Independent Component Analysis (ICA) algorithm. The benefits of additionally fusing a data-driven system model will further be discussed for the case of complex structural response. The method is assessed via implementation on field data acquired from diverse structural systems, namely a benchmark bridge case study and a wind turbine tower structure, revealing a robust condition assessment tool.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.