Issue |
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 6 | |
Section | Deterministic and stochastic dynamics and control of nonlinear systems | |
DOI | https://doi.org/10.1051/matecconf/20141605002 | |
Published online | 01 September 2014 |
On nonlinear dynamics and control of a robotic arm with chaos
1 UNIPAMPA, Bagé, RS, Brazil
2 UFABC, Santo Andre, SP, Brazil
3 UTFPR, Ponta Grossa, PR, Brazil
4 UNESP, Sorocaba, SP, Brazil
In this paper a robotic arm is modelled by a double pendulum excited in its base by a DC motor of limited power via crank mechanism and elastic connector. In the mathematical model, a chaotic motion was identified, for a wide range of parameters. Controlling of the chaotic behaviour of the system, were implemented using, two control techniques, the nonlinear saturation control (NSC) and the optimal linear feedback control (OLFC). The actuator and sensor of the device are allowed in the pivot and joints of the double pendulum. The nonlinear saturation control (NSC) is based in the order second differential equations and its action in the pivot/joint of the robotic arm is through of quadratic nonlinearities feedback signals. The optimal linear feedback control (OLFC) involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system to a desired periodic orbit, and control a feedback control to bring the trajectory of the system to the desired orbit. Simulation results, including of uncertainties show the feasibility of the both methods, for chaos control of the considered system.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.