Issue |
MATEC Web of Conferences
Volume 13, 2014
ICPER 2014 - 4th International Conference on Production, Energy and Reliability
|
|
---|---|---|
Article Number | 04023 | |
Number of page(s) | 5 | |
Section | Materials and Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/20141304023 | |
Published online | 17 July 2014 |
Contact Stress Analysis for Gears of Different Helix Angle Using Finite Element Method
1 Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia.
2 Institute Kirilo Savic, Belgrade, Serbia.
a Corresponding author: santosh045@gmail.com
The gear contact stress problem has been a great point of interest for many years, but still an extensive research is required to understand the various parameters affecting this stress. Among such parameters, helix angle is one which has played a crucial role in variation of contact stress. Numerous studies have been carried out on spur gear for contact stress variation. Hence, the present work is an attempt to study the contact stresses among the helical gear pairs, under static conditions, by using a 3D finite element method. The helical gear pairs on which the analysis is carried are 0, 5, 15, 25 degree helical gear sets. The Lagrange multiplier algorithm has been used between the contacting pairs to determine the stresses. The helical gear contact stress is evaluated using FE model and results have also been found at different coefficient of friction, varying from 0.0 to 0.3. The FE results have been further compared with the analytical calculations. The analytical calculations are based upon Hertz and AGMA equations, which are modified to include helix angle. The commercial finite element software was used in the study and it was shown that this approach can be applied to gear design efficiently. The contact stress results have shown a decreasing trend, with increase in helix angle.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.