Issue |
MATEC Web of Conferences
Volume 9, 2013
1st International Seminar for Fire Safety of Facades
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 11 | |
Section | Fire Safety Engineering | |
DOI | https://doi.org/10.1051/matecconf/20130903002 | |
Published online | 29 November 2013 |
Computer-simulation study on fire behaviour in the ventilated cavity of ventilated façade systems
1 INCAFUST Catalan Institute of Wood, Barcelona, Spain
2 Architectural Buildings Department, Technical University of Catalonia (UPC), Barcelona, Spain
3 Applied Physics Department (EPSEB), Technical University of Catalonia (UPC), Barcelona, Spain
Fire spread through the façades is widely recognized as one of the fastest pathways of fire spreading in the buildings. Fire may spread through the façade in different ways depending on the type of façade system and on the elements and materials from which it is constructed. Ventilated façades are multilayer systems whose main feature is the creation of an air chamber of circulating air between the original building wall and the external cladding. The “chimney effect” in the air cavity is a mechanism that improves the façade's thermal behaviour and avoids the appearance of moisture from rain or condensation. However, in a event of fire, it may contribute to the quickest spreading of fire, representing a significant risk to the upper floors of a building. This study deals with some aspects of fire propagation through the ventilated cavity in ventilated façade systems. Also we review the provisions stipulated by the Spanish building code (Código Técnico de la Edificación, CTE) [1] to avoid fire spread outside the building.
The results highlight the importance of the use of proper fire barriers to ensure the compartmentalization of the ventilated cavity, as well as the use of non-combustible thermal insulation materials, among others. In addition, based on the results, it might be considered that the measures stipulated by the CTE are insufficient to limit the risks associated with this kind of façades systems. The study has been performed using field models of computational fluid-dynamics. In particular, the Fire Dynamics Simulator (FDS) software has been used to numerically solve the mathematical integration models.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.