Issue |
MATEC Web Conf.
Volume 310, 2020
4th International Scientific Conference Structural and Physical Aspects of Construction Engineering (SPACE 2019)
|
|
---|---|---|
Article Number | 00041 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/202031000041 | |
Published online | 05 March 2020 |
Homogenization of trabecular structures
Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16629 Praha 6, Prague, Czech Republic
* Corresponding author: krejci@fsv.cvut.cz
Numerical modeling of implants and specimens made from trabecular structures can be difficult and time-consuming. Trabecular structures are characterized as spatial truss structures composed of beams. A detailed discretization using the finite element method usually leads to a large number of degrees of freedom. It is attributed to the effort of creating a very fine mesh to capture the geometry of beams of the structure as accurately as possible. This contribution presents a numerical homogenization as one of the possible methods of trabecular structures modeling. The proposed approach is based on a multi-scale analysis, where the whole specimen is assumed to be homogeneous at a macro-level with assigned effective properties derived from an independent homogenization problem at a meso-level. Therein, the trabecular structure is seen as a porous or two-component medium with the metal structure and voids filled with the air or bone tissue at the meso-level. This corresponds to a two-level finite element homogenization scheme. The specimen is discretized by a reasonable coarse mesh at the macro-level, called the macro-scale problem, while the actual microstructure represented by a periodic unit cell is discretized with sufficient accuracy, called the meso-scale problem. Such a procedure was already applied to modeling of composite materials or masonry structures. The application of this multi-scale analysis is illustrated by a numerical simulation of laboratory compression tests of trabecular specimens.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.