Issue |
MATEC Web Conf.
Volume 304, 2019
9th EASN International Conference on “Innovation in Aviation & Space”
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 8 | |
Section | Aerostructures & Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201930401003 | |
Published online | 17 December 2019 |
Numerical evaluation of crack stopping mechanisms in composite bonded joints due to corrugation and bolts
Laboratory of Technology & Strength of Materials, Department of Mechanical Engineering & Aeronautics, University of Patras,
Patras,
26500,
Greece
In this paper, the crack stopping mechanisms in corrugated composite bonded joints and hybrid bonded/bolted joints were evaluated numerically using the cohesive zone modeling approach. For the study, the DCB (double-cantilever beam) and the CLS (crack-lap shear) specimens were modelled. The first two specimens were subjected to static loads and the latter both to static and fatigue loads. The analysis was performed using the LS-DYNA explicit FE code. Fatigue crack growth simulation was performed using an in-house developed user-defined subroutine (UMAT). The numerical results reveal a crack stopping in the corrugated DCB, no crack stopping in the corrugated CLS and a reduction of crack growth rate in the bonded/bolted CLS for both static and fatigue loads. The methods and the findings of the present study can be used for the design of crack stopping features in adhesively bonded primary composite aircraft structures.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.