Issue |
MATEC Web Conf.
Volume 289, 2019
Concrete Solutions 2019 – 7th International Conference on Concrete Repair
|
|
---|---|---|
Article Number | 10007 | |
Number of page(s) | 7 | |
Section | Case Studies | |
DOI | https://doi.org/10.1051/matecconf/201928910007 | |
Published online | 28 August 2019 |
Corrosion at low moisture content in both carbonated and chloride polluted concrete – Villa E-1027, a case study
Laboratoire de Recherche des Monuments Historiques, Centre de Recherche sur la Conservation (CRC-USR 3224), Muséum national d'Histoire naturelle, CNRS, Sorbonne Universités, 29 Rue de Paris, 77420, Champs-sur-Marne, France
* Corresponding author: elisabeth.marie-victoire@culture.gouv.fr
Corrosion in reinforced concrete is generally attributed to either carbonation or chloride presence in the vicinity of the bars. But in the field of cultural heritage, especially for the most ancient monuments, it is not rare to encounter both carbonated and chloride polluted concrete, inducing heavy corrosion, as was the case in the Villa E-1027 in Roquebrune-Cap-Martin, on the French Mediterranean seashore. The villa was designed by Eileen Gray and Jean Badovici between 1926 and 1929. Due to aggressive environmental conditions and a period of dereliction, the concrete of the villa was quite heavily decayed and a deep restoration was led between 2000 and 2006. But after a little more than 10 years, and despite active maintenance, the villa is again facing corrosion induced decay. Prior to the definition of a new restoration protocol, to better evaluate the corrosion activity, in 2017 a permanent monitoring of moisture and temperature both in the air and in the concrete was installed. In the meantime, a series of instant electrochemical measurements was performed from 2017 to 2018. A first analysis of the results of the monitoring and the non-destructive tests clearly evidences that probably due to the conjunction of the carbonation of the concrete and external active chloride pollution, corrosion can happen at quite low moisture content.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.