Issue |
MATEC Web Conf.
Volume 289, 2019
Concrete Solutions 2019 – 7th International Conference on Concrete Repair
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 6 | |
Section | Patch Repair | |
DOI | https://doi.org/10.1051/matecconf/201928902001 | |
Published online | 28 August 2019 |
Effect of micro-climate variations on carbonation rate of concrete in the inland environment
Department of Civil Engineering, The Federal Polytechnic Idah, Nigeria
Corresponding author: alhassanay@gmail.com
In an inland environment, carbonation is the primary cause of initiation for potential corrosion of steel in reinforced concrete. This problem has been exacerbated over recent years by increased urbanisation and vehicular traffic, resulting in higher atmospheric carbon dioxide contents – a problem typical of economically active cities throughout the world. It is important that designers of reinforced concrete structures respond to these variations through appropriate specifications to ensure that structures perform satisfactorily over their intended service lives. This paper is part of a study undertaken to assess the carbonation of concretes exposed to a range of micro-climate variations in inland environments, particularly with variations in carbon dioxide content, temperature and relative humidity conditions with the intent of developing a prediction model for the rate of carbonation. Concretes samples were prepared using three binder types representing variations of blends with FA, GGBS and four w/b ratios ranging from 0.4 to 0.75 and subjected to different degrees of initial water curing (3, 7, 28 days). These samples were placed in three exposure conditions: indoors in laboratory air, outdoors sheltered from rain and sun and outdoors fully exposed to the elements. The depths of carbonation of these samples were monitored over a period of 24 months in order to determine the rates of carbonation. Concrete samples in the outdoor sheltered sites presented the highest rate of carbonation. Although samples in this exposure site carbonated faster, the risk of reinforcement corrosion is likely to be low because the samples are protected from direct moisture effect. Keywords: Carbonation, Corrosion, Reinforced concrete, Micro climate, Inland environments
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.