Issue |
MATEC Web Conf.
Volume 287, 2019
6th International BAPT Conference “Power Transmissions 2019”
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 6 | |
Section | Design, Analysis, Simulation and Optimization | |
DOI | https://doi.org/10.1051/matecconf/201928701017 | |
Published online | 14 August 2019 |
Design of a new-concept conical positive displacement slurry pump for continuous de-clogging
1
School of Mechanical Engineering, National Technical University of Athens - NTUA
2
Department of Mechanical Engineering Educators, School of Pedagogical and Technological Education - ASPETE
* Corresponding author: gvasileiou@mail.ntua.gr
Slurry pumps are extensively used in the construction industry while positive displacement screw pumps are used in most mobile concrete pump applications. The aggregate size is known to significantly affect pump performance in terms of clogging. Large aggregates tend to be trapped against the stator-rotor interface, blocking the continuous and smooth operation of the screw pump. In order to avoid the development of excessive stress values able to damage the rotor-stator mechanism of the pump, the typical de-clogging mechanism deployed by most positive displacement screw slurry pumps includes reversing the rotation of the pump driving motor thus allowing the aggregates to be carried away with the mixture, so that the pump can soon resume its operation. This procedure causes frequent start-stops of the pump resulting in dis-continuation of the pumped mixture lasting a few seconds, that while being of little importance in most construction applications, can be of significance in applications requiring higher levels of accuracy and continuous mixture flow. In the context of this work, a novel concept of positive displacement screw slurry pump is presented, including a continuous de-clogging mechanism, without the need to reverse the rotation of the driving motor. This de-clogging operation is achieved through the modification of the geometry of both the rotor and stator introducing a conical form along the axial direction. This configuration of the rotor-stator, allows for small displacements along the axial direction, which in turn increases the size of the cavities facilitating the de-clogging of the pump. Variable pitch is also introduced to both the rotor and stator in order to ensure constant mass flow of the mixture throughout the length of the screw pump covering for the velocity increase as a result of the conical geometry. The axial movement of the rotor in relation to the fixed stator, is achieved through the elastic support of the rotor in the axial direction, that allows for small axial displacements, when stresses induced from trapped aggregates exceed the stiffness of the support. The proposed concept comprises a passive real-time de-clogging mechanism that greatly reduces pump idle time compared to the conventional mechanism described earlier, providing smoother operation and stable mass flow of the mixture.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.