Issue |
MATEC Web Conf.
Volume 286, 2019
14th Congress of Mechanics (CMM2019)
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 3 | |
Section | Fluid Mechanics, Rheology, Modeling, Instabilities and Transition | |
DOI | https://doi.org/10.1051/matecconf/201928607009 | |
Published online | 14 August 2019 |
Dominant modes in hydromagnetic stability of channel flow with porous walls
Laboratory of Mechanics, Faculty of Sciences Aïn-Chock, University Hassan II , Casablanca, Morocco
A linear stability analysis of a plane channel flow with porous walls under a uniform cross-flow and an external transverse magnetic field is explored. The physical problem is governed by a system of combined equations of the hydrodynamic and those of Maxwell. The perturbed problem of base state leads to a modified classical Orr-Sommerfeld equation which is solved numerically using the Chebyshev spectral collocation method. The combined effects of the cross-flow Reynolds number and the Hartmann number on the dangerous mode of hydromagnetic stability are investigated.The study shows that, the magnetic field tends to suppress the instability occurred by cross-flow. This stabilizing effect becomes perceptible when the magnetic field produces a mode transition from walls mode to that of the center.
Key words: Dominant modes / cross-flow / magnetic field / porous walls / hydromagnetic stability / Spectral method.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.