Issue |
MATEC Web Conf.
Volume 276, 2019
International Conference on Advances in Civil and Environmental Engineering (ICAnCEE 2018)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 10 | |
Section | Highway and Transportation Engineering | |
DOI | https://doi.org/10.1051/matecconf/201927603001 | |
Published online | 15 March 2019 |
Characteristics of masonry block that utilizes reclaimed asphalt pavement and waste cooking oil as the binder
Department of Civil Engineering, Universitas Udayana, Bali, Indonesia
* Corresponding author: aryathanaya@unud.ac.id
The availability of natural aggregate is getting limited, therefore it is required new alternative materials to substitute natural aggregates. Within this experiment reclaimed asphalt pavement (RAP) was used as masonry block with waste cooking oil as the binder. The objective of this experiment was to analyze the RAP asphalt content and aggregate gradation; and the samples characteristics particularly the compressive strength of masonry block minimum of 25 kg/cm2 that meet the Indonesian national standard SNI-03-0348-1989. The asphalt content of the RAP was initially extracted and tested for its aggregate gradation and specific gravity. The RAP was added 20% sand and a certain amount of waste cooking oil and evenly mixed. After that the mixture was compacted in a mould with a Marshall hummer, with compaction cycles for 15, 25, and 35 times where each cycle consists of 3 even blows. The size of the compacted samples were 20x10x8cm. After the samples were taken out from the mould, they were heated in an oven for 12 and 24 hours at 160°C and 200°C. It was found that the minimum waste cooking oil content required 4%. The best compressive strength was found on samples compacted at 15 compaction cycles and heated at 200°C for 24 hours. The un-soaked compressive strength was 80.5 kg/cm2 and 68.67 kg/cm2 for the soaked samples. In general the compressive strength well met the minimum 25 kg/cm2. Other best characteristics was found on samples heated at 160°C for 12 hours, with lowest water absorption of 5.64% and porosity of 4.53%. The Initial Rate of Suction (IRS) was 0,25~0,45 kg/m2.minute.
© Owned by the authors, published by EDP Sciences, 2012
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.