Issue |
MATEC Web Conf.
Volume 245, 2018
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2018)
|
|
---|---|---|
Article Number | 18001 | |
Number of page(s) | 10 | |
Section | Waste Management | |
DOI | https://doi.org/10.1051/matecconf/201824518001 | |
Published online | 05 December 2018 |
Adsorption of rare earth elements using bio-based sorbents
1
Hamburg University of Technology, Institute of Environmental Technology and Energy Economics, 21079 Harburger Schlosstraße 36, Hamburg, Germany
2
Peter the Great St. Petersburg Polytechnic University, 29 AF Polytechnicheskaya str., 195251, Saint-Petersburg, Russia
* Corresponding author: arina.kosheleva@tuhh.de
Rare earth elements (REEs) have recently received significant attention due to their irreplaceable industrial application for the number of crucial advanced technologies in production of permanent magnets, batteries, luminescence lamps, lasers and other electronic and electrical goods. These technologies have been strongly affecting present consumption of REEs as well as looking for alternative sources, that would guarantee their sufficient supply for the future demand. This study investigates one of the possible and widely employed techniques for the efficient and at the same time, environmentally friendly recovery of REEs by adsorption using bio-based adsorbents. Overall, three bio-sorbents with different composition (residual biomass originated from agriculture and bio-refineries) were examined to study removal efficiency of the 7 most commonly used REEs in mixed aqueous solution. Batch adsorption experiments were carried out at the room temperature, varying the pH value (pH=1,54; 4,24) and different initial concentration of REEs to determine optimum condition for their recovery. Results revealed that removal efficiency for most of the REEs was much higher at pH=4,24 and reached 70-100% for the minimal concentrations and 30-40 % at maximal initial concentrations respectively. Adsorbent containing residual biomass and chitosan showed to be the most effective bio-sorbent for recovery of most of the REEs. In order to describe and fit the obtained data Langmuir and Freundlich isotherms models were employed.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.