Issue |
MATEC Web Conf.
Volume 220, 2018
2018 The 2nd International Conference on Mechanical, System and Control Engineering (ICMSC 2018)
|
|
---|---|---|
Article Number | 08001 | |
Number of page(s) | 7 | |
Section | Control Theory and Control Engineering | |
DOI | https://doi.org/10.1051/matecconf/201822008001 | |
Published online | 29 October 2018 |
Robust Adaptive Nonlinear Dynamic Inversion Control for an Air-breathing Hypersonic Vehicle
School of Aerospace Engineering, Beijing Institute of Technology, 100081, Beijing, China
This paper presents a robust adaptive nonlinear dynamic inversion control approach for the longitudinal dynamics of an air-breathing hypersonic vehicle. The proposed approach adopts a fast adaptation law using high-gain learning rate, while a low-pass filter is synthesized with the modified adaptive scheme to filter out the high-frequency content of the estimates. This modified high-gain adaptive scheme achieves a good transient process and a nice robust property with respect to parameter uncertainties, without exciting high-frequency oscillations. Based on input-output linearization, the nonlinear hypersonic dynamics are transformed into equivalent linear systems. Therefore, the pole placement technique is applied to design the baseline nonlinear dynamic inversion controller. Finally, the simulation results of the modified adaptive nonlinear dynamic inversion control law demonstrate the proposed control approach provides robust tracking of reference trajectories.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.