Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 02056 | |
Number of page(s) | 4 | |
Section | Track 2: Mechanical, Mechatronics and Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819202056 | |
Published online | 14 August 2018 |
Design of natural-rubber panel railroad crossing using finite element method
1
Automotive Engineering, International College, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung, Bangkok, Thailand
2
Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
3
Mechanical Engineering Department, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
4
Extensive Research Polymers Co. Ltd., 26 Moo 4 Tamboon Nonghong, Panthong, Chonburi, Thailand
Thailand has a railway system that is available throughout the country, so there are several railroad crossings. These crossings are generally made of concrete or logs with multiple constraints. There are some disadvantages of concrete railroad crossing, such as, crack, noise during car passing over. To overcome these disadvantages, the softer materials should be used instead. Therefore, this research proposes the natural rubber, widely grown throughout Thailand, panel railroad crossing. However, the natural rubber alone is not enough to withstand the harsh condition. Thus, it is necessary to have some addition ingredients that will enhance the natural rubber properties. The material used in this research is a rubber compound between Chloroprene Rubber (CR) 75% and Natural rubber (NR) 25% blend with additives such as carbon black (CB), magnesium oxide (MgO) and sulfur (S8). The objectives of this article were to analyze the deformation of the natural rubber panel railroad crossing and to evaluate its safety factor, defined as the ratio of strain at break and the maximum equivalent strain, using finite element method. In the analysis, the applied loading of the model was obtained from the State Railway of Thailand. The analyzed results reveal that the deflection of rubber panels passes the standard from State Railway of Thailand. Safety factor of external rubber panel is 27.03 and for internal rubber panels are 9.12 and 15.29. The metal pads had elastically deformed and concrete railroad sleeper deformation was very small.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.