Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 4 | |
Section | Track 2: Mechanical, Mechatronics and Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819202009 | |
Published online | 14 August 2018 |
Construct and control of feet gait mechanisms for walking training
Mechatronics Engineering Department, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathumthani, Thailand
*
Corresponding author : warawut_s@rmutt.ac.th
Gait training or gait rehabilitation is one of the major physiotherapy for stroke patients. Evidently, the robot-assisted gait training, as one part of medical technology innovation breakthrough, has important role in the rehabilitation process. The robot effectively improves treatment outcomes, fast recovery time and better convenience from traditional treatment. Typically, stroke patients are trained to walk on treadmill while a physiotherapist carefully supports and re-correct the gait pattern of the patient. For repetitive and long-time rehabilitation, it is so difficult that the physiotherapist can maintain the quality of treatment consistently. To solve such difficulties, the robotic platform is proposed for automatic guiding the gait pattern for ankle rehabilitation. The robot consists of left and right sides. Each of them is actuated by two linear and one rotational actuator. PID algorithm is implemented for position control of each joint. The experimental results show the tracking error in non-loaded and loaded cases.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.