Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 4 | |
Section | Track 2: Mechanical, Mechatronics and Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819202005 | |
Published online | 14 August 2018 |
A traffic micro-simulation model to estimate four-lane highways' capacity in Thailand
1
Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
2
Department of Civil Engineering, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
*
Corresponding author : ladpit@kku.ac.th
This article purposed to present the maximum capacity and to develop the equation in the capacity estimation of 4 types of four-lane highways by using the micro-simulation model. Regarding the analysis, the factors affecting the capacity include access-point, heavy vehicles and median u-turn. According to the study, it was found that the maximum capacity of the four-lane highways in type 1 is 2194 passenger car/hour/lane. In the descending orders, the maximum capacity of the highways with four lanes in type 2, 3, and 4 are 2161, 2094 and 2017 passenger car/hour/lane, respectively. At the same time, the maximum capacity of the prevailing condition in the study is 1300-1600 vehicles/hour/lane, which is different from the HCM2010 method for 20-30%, due to the Thai's highway characteristics directly affect the traffic and driving behavior. Median u-turn affects the four-lane highways in type 1 and 2 the most, while access-point factor has the most influence towards type 3 and 4. In addition, the author has developed the equation models for capacity estimation, which the result derived from the relationship between the capacities and affecting factors. It was aimed at using as the guidelines in the capacity assessment of Thai's four-lane highways in the future.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.