Issue |
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
|
|
---|---|---|
Article Number | 03017 | |
Number of page(s) | 9 | |
Section | Cloud & Network | |
DOI | https://doi.org/10.1051/matecconf/201818903017 | |
Published online | 10 August 2018 |
A novel indoor localization scheme based on refined fingerprint-based autoencoder network
Shanghai Jiao Tong University, Shanghai 200240, China
* Corresponding author: lcchenjh@sjtu.edu.cn
Indoor positioning systems have attracted increasing interests for the emergency of location based service in indoor environments. Wi-Fi fingerprint-based localization scheme has become a promising indoor localization technique due to the availability of access point (AP) and its low cost. However, the received signal strength (RSS) values are easily fluctuated by the interference of multi-path effects, which introduce propagation errors into localization results. In order to address the issue, a fingerprint-based autoencoder network scheme is proposed to learn the essential features from the measured coarse RSS values and extract the trained weight parameters of autoencoder network as refined fingerprints. The extracted fingerprints are able to represent the environmental properties and display strong robustness with fluctuated signals. The proposed scheme is further implemented in complex indoor scenes, which substantiate the effectiveness and accuracy improvement compared with other RSS-based schemes.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.