Issue |
MATEC Web Conf.
Volume 188, 2018
5th International Conference of Engineering Against Failure (ICEAF-V 2018)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 8 | |
Section | Metallic Materials II: Damage Accumulation, Structural Integrity, Advanced Manufacturing Techniques | |
DOI | https://doi.org/10.1051/matecconf/201818803002 | |
Published online | 07 August 2018 |
Solid particle erosion response of aluminum reinforced with tungsten carbide nanoparticles and aluminide particles
Laboratory of Applied Metallurgy, Department of Materials Engineering, University of Ioannina,
45110
Ioannina,
Greece
* Corresponding author: akarantz@cc.uoi.gr
The main concept behind this work is to further enhance the attractive properties of aluminum by fabricating Al - WC composites and evaluating them in terms of their solid particle erosion response. Aluminum Matrix Composites (AMCs) were produced by the addition of submicron sized WC particles (up to 2.5vol %) into a melt of Al1050. Casting was assisted by the use of K2TiF6 as a wetting agent and mechanical stirring in order to minimize particle clustering. Extensive presence of in-situ intermetallic phases (Al4W, Al5W, Al12W, Al3(Ti,W), Al3Ti) was observed in the cast products. Particle distribution was reasonably uniform comprising both clusters and isolated particles. Solid particle erosion experiments were carried out for impact angles of 30°, 60° and 90°, using angular Al2O3 particles as the eroding medium and under 5 bar spraying pressure. The erosion rate was calculated by measuring the mass loss and the eroded surfaces were examined with SEM-EDX. Increased erosion resistance was observed for low particle additions (≤ 1.0 vol%WC). Finally, a possible erosion mechanism was proposed based on the material’s microstructural and morphological characteristics.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.