Issue |
MATEC Web Conf.
Volume 188, 2018
5th International Conference of Engineering Against Failure (ICEAF-V 2018)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 6 | |
Section | Composite Materials: Characterization, Mechanical Behavior and Modeling, Advanced Manufacturing Techniques, Multifunctionality | |
DOI | https://doi.org/10.1051/matecconf/201818801006 | |
Published online | 07 August 2018 |
Assessing the integrity of CFRPs through nanomechanical mapping: the effect of CF surface modification
Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology (R-Nano Lab), Material Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens,
Zographou,
GR-15780,
Greece
* Corresponding author: charitidis@chemeng.ntua.gr
The purpose of this study is to assess the effect of CF surface modification in enhancement of the wetting properties of carbon fibers in order to improve the adhesion force between the fiber and the polymer matrix; for this, the integrity of CFRPs through nanomechanical mapping was evaluated. The surface of commercial carbon fibers was functionalized through cyclic voltammetry in aqueous electrolyte solutions of H2SO4, in the presence of acrylic acid, methacrylic acid, acrylonitrile and N-vinylpyrrolidone monomers. The produced surface modified carbon fibers were embedded in epoxy resin. Elastic modulus nanoindentation mapping was performed in order for elastic modulus to be calculated, as a qualitative assessment of fibre – matrix interaction. For this, a grid protocol was set up for the integrity assessment of CFRPs through nanomechanical mapping.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.