Issue |
MATEC Web Conf.
Volume 186, 2018
2018 The 7th International Conference on Engineering Mathematics and Physics (ICEMP 2018)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 6 | |
Section | Material Physics and Performance Analysis | |
DOI | https://doi.org/10.1051/matecconf/201818602007 | |
Published online | 06 August 2018 |
Performance of Glazing Materials for Atrium in Hot & Humid Climate
1
Institut Teknologi Bandung, Architecture Program, Bandung, Indonesia
2
Universitas Bangka Belitung, Engineering Physics Department, Pangkalpinang, Indonesia
3
Universitas Gadjah Mada, Engineering Physics Department, Yogyakarta, Indonesia
One comfort issue that considered to be the most important is thermal comfort. Air temperature is the most influential factor, and it is related to solar radiation and building's glazing. Besides thermal comfort, glazing is also needed to provide daylighting. Therefore, due to its relation to thermal comfort and daylighting, the glazing materials selection is crucial. Hence, by focusing on atrium in hot and humid climate, this study is aimed to examine a sufficient material with good thermal and daylighting performance. The results show that argon filled glazing is the most suitable material for atrium glazing in hot and humid climate. Argon filled glass has lowest U-value and total solar transmission than any other glazing materials simulated, but its light transmission is not too low so the daylight delivered still adequate to the standard. Accordingly, U-value, solar heat gain coefficient, and light transmission coefficient are concluded as the determinant factor in selecting glazing material.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.