Issue |
MATEC Web Conf.
Volume 185, 2018
2018 The 3rd International Conference on Precision Machinery and Manufacturing Technology (ICPMMT 2018)
|
|
---|---|---|
Article Number | 00020 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201818500020 | |
Published online | 31 July 2018 |
Study on forging process and die design of parking sensor shell
1
Department of Mechanical Manufacturing Engineering, National Formosa University, 64 Wunhau Road, Taiwan, 632, Yunlin, ROC
*
Corresponding author : tsyang@nfu.edu.tw
The process of precision forging has been developed recently because of its advantages of giving high production rates and improved strength. For complete filling up, predicting the power requirement and final shape are important features of the forging process. A finite element method is used to investigate the forging force, the final shape and the stress distribution of the parking sensor shell forging. The stress-strain curve of AL-6082 is obtained by the computerized screw universal testing machine. The friction factor between AL-6082 alloy and die material (SKD11) are determined by using ring compression test. Stress-strain curve and fiction factor are then applied to the finite element analysis of the parking sensor shell forging. Maximum forging load, effective stress distribution and shape dimensions are determined of the parking sensor shell forging, using the finite element analysis. Then the parking sensor shells are formed by the forging machine. Finally, the experimental data are compared with the results of the current simulation for the forging force and shape dimensions of the parking sensor shell.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.