Issue |
MATEC Web Conf.
Volume 179, 2018
2018 2nd International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2018)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 10 | |
Section | Materials | |
DOI | https://doi.org/10.1051/matecconf/201817902001 | |
Published online | 26 July 2018 |
Research on Thermal Insulation Performance of Lightweight Thermal Protection Materials for High Speed Aircraft under Different Boundary Conditions
School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
a Corresponding author: wdf1950@163.com
The determination of thermal insulation performance of thermal protection materials or structures is an indispensable and important step in the safety design of high speed flight vehicles. To obtain the temperature difference of the radiating surface for plate specimens under three different boundary conditions in heat insulation experiments (the specimens were placed either vertically or horizontally with the radiating surface facing down or horizontally with the radiating surface facing up), three thermal test setups were established to test the thermal insulation performance of light-weight ceramic specimens at different temperatures. The results show that the radiating surface temperature was the highest when the specimen was placed horizontally with the radiating surface facing down, while it was the lowest when the specimen was placed horizontally with the radiating surface facing up.The numerical calculation results agreed very well with the experimental ones, confirming the credibility and accuracy of the experimental results. The different thermal insulation performances of the plate specimens obtained under three different boundary conditions will provide important guidance for designers in the design of thermal protection systems for large cabins of high speed flight vehicles.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.