Issue |
MATEC Web Conf.
Volume 163, 2018
MATBUD’2018 – 8th Scientific-Technical Conference on Material Problems in Civil Engineering
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 6 | |
Section | Cement Pastes and Mortars | |
DOI | https://doi.org/10.1051/matecconf/201816304003 | |
Published online | 15 June 2018 |
Effect of boron-containing aggregates on setting and hardening of Portland cement mortars
1
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
2
Institute of Ceramics and Building Materials, Department of Process and Environmental Engineering, Oświęcimska 21, 45-641 Opole, Poland
* Corresponding author: aantolik@ippt.pan.pl
Multicomponent cement-based composites are known as versatile structural materials for enhanced radiation shielding. The use of selected elements, like boron, cadmium, or rare earth elements, provides an increased neutron shielding capacity. Because of profusion, reasonable costs and large cross-section for neutron capture, boron containing minerals are suggested as aggregates for radiation shielding concrete. Despite many advantages, boron additives may act as cement setting retarders. Uncontrolled setting and hardening is not acceptable in radiation shielding concrete technology. In this work we present results from isothermal calorimetry measurements on cement mortars with boron-containing aggregates. Four types of boron aggregates were used in the studies: colemanite, ulexite, borax and boron carbide. Based on calorimetric curves, the beginning of setting time was determined. Additionally early mortar strength was investigated and linear relationship between the heat generated in the isothermal calorimeter and the early compressive strength has been observed. The use of isothermal calorimetry allowed us to estimate the limits for the content of boron compounds to be used cement mortar.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.