Issue |
MATEC Web of Conferences
Volume 159, 2018
The 2nd International Joint Conference on Advanced Engineering and Technology (IJCAET 2017) and International Symposium on Advanced Mechanical and Power Engineering (ISAMPE 2017)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 6 | |
Section | Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201815902012 | |
Published online | 30 March 2018 |
Numerical simulation of heat transfer augmentation in fin-and-tube heat exchanger with various number of rows of concave rectangular winglet vortex generator
1,2
Mechanical Engineering Department, Diponegoro University, Semarang, Indonesia
3
Aerospace Department, Bandung Polytechnic, Bandung, Indonesia
4
Department of Mechanical Engineering for Production, Gyeongsang National University, Jinju, South Korea
* Correspondingauthor: syaiful.undip2011@gmail.com
The passive method by using a vortex generator (VG) is an effective method for the improvement of convective heat transfer. This study is focused on usage of concave rectangular winglet vortex generator (CRW VG) for improving convective heat transfer in a fin-and-tube heat exchanger using numerical simulation. Concave rectangular winglet pairs (CRWP) and rectangular winglet pairs (RWP) VGs were mounted inside the gap between fins (gas side) with variations of the number of VG pairs of rows. Inlet air velocity variations expressed by the Reynolds numbers were ranged from 364 to 689. Augmentation of heat transfer is indicated by the ratio value of heat transfer convection coefficient between cases using VG and that without using VG (baseline). The results show that the convection heat transfer coefficient for cases using CRWP VG is higher than that using RWP VG. Convection heat transfer coefficient increases up to 102% by mounting CRWP VG at Re = 364. However, the increase in convection coefficient is accompanied by a rise in pressure drop to 216.8%.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.