Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 05019 | |
Number of page(s) | 5 | |
Section | Materials and Processing | |
DOI | https://doi.org/10.1051/matecconf/201815605019 | |
Published online | 14 March 2018 |
Preparation of Graphene Oxide Sand Composites as Super Adsorbent for Water Purification Application
Chemical Engineering Department, Politeknik Negeri Bandung, Indonesia
* Corresponding author: andrijanto.2002@gmail.com
This paper describes a method to synthesize a graphene oxide sand composites (GSC) as filter media (absorbent) for water purification. Graphene oxides is synthesized from graphite using modification of Hummer's method. The graphene oxide sand composites is prepared through solution method at 100 °C. The graphene oxide is analyzed using XRD, FTIR to confirm its formation. The FTIR spectrum and XRD diffraction pattern confirmed that the graphene oxide synthesized by this method is able to convert graphite into graphene oxide. Performance tests were conducted using a column to purify contaminated water which was mimicked using dyes such as rhodamine B, methylene blue and methyl orange.The initial concentration for all dyes were set for 5, 10, 25, 50 and 100 ppm. The color removal for methylene blue was 100% at all concentrations. However, for the rhodamine B and methyl orange, the color removal achieved 100% for the first three concentration 5, 10 and 25 ppm. The higher concentration of 50 and 100 ppm, the removal were slightly reduced. For the 50 ppm, the color removal of rhodamine B was 98% and for methyl orange 87% respectively. At 100 ppm, the color removal for rhodamine B drops to 92% and for the methyl orange was only 77% respectively. The GSC was very effective to remove methylene blue dyes at any concentration followed by rhodamine B and methyl orange. This GSC composite material is potential to be applied for water purification.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.