Issue |
MATEC Web Conf.
Volume 153, 2018
The 4th International Conference on Mechatronics and Mechanical Engineering (ICMME 2017)
|
|
---|---|---|
Article Number | 08002 | |
Number of page(s) | 6 | |
Section | Industrial Engineering and Manufacturing Systems | |
DOI | https://doi.org/10.1051/matecconf/201815308002 | |
Published online | 26 February 2018 |
Design and Fabrication of Integrated Microchannel and Peristaltic Micropump System for Inertial Particle Separation
Department of Mechanical Engineering, Istanbul Technical University, MEMS Research Center (www.mems.itu.edu.tr), Istanbul, Turkey
In particle separation applications, conventional syringe pumps are widely used to supply fluid flow into microchannels at a controlled flow rate. However, their bulky structures lack the development of compact particle separation systems which is essential for all LoC (Lab on a Chip) systems. In this study, we designed and fabricated a peristaltic micropump which can be integrated into an inertial particle separation microchannel at the same layer with a compact design. Since inertial particle separation can be done without a need for an external force field, we aimed to develop a μTAS (Micro Total Analysis Systems) system which is able to realize particle separation in an integrated micropump-microchannel system. The circular micropump channel made of two PDMS layers and its width is optimized. The 3D-Printed micropump is actuated by a stepper motor, and the rate of pumped fluid is monitored by an LCD screen connected and programmed to system according to the system parameters. Micropump has a theoretical capacity of supplying particle carrying fluid at the flow rate of 25.47 ml/min when the stepper motor is rotated at 330 rpm.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.