Issue |
MATEC Web Conf.
Volume 88, 2017
2016 International Conference on Biomaterials, Nanomaterials and Composite Materials (CBNCM 2016)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 6 | |
Section | Chapter 2: Nano-materials and Composite materials | |
DOI | https://doi.org/10.1051/matecconf/20178802005 | |
Published online | 09 December 2016 |
Experimental Study on Tensile Properties of GFRP Bars Embedded in Concrete Beams with Working Cracks
School of transportation, Wuhan University of Technology, 430063 Wuhan, China
a Corresponding author: dlwhut2012@163.com
This paper presents the test results of an experimental study carried out to investigate the tensile properties of GFRP bars embedded in concrete beams with working cracks. The specimens were conditioned with sustained loading in 50°C alkaline solution and tap water for 6, 12, 18 months. The tensile test results show that the degradation rate of GFRP bars embedded in the concrete specimens with work cracks is larger than that of non-work cracks, while the effect of working cracks on the elastic modulus is not significant. The microstructure of GFRP bar surface before and after the test was observed by scanning electron microscopy (SEM), combined with Fourier-transform infrared spectroscopy (FTIR) and differential-scanning calorimetry (DSC), the degree of hydrolysis reaction and glass transition temperature is also analyzed. Compared with the hydrolysis of resin matrix, it can be found that the deterioration of glass fiber and the delamination at the interfacial is more pronounced for the GFRP bars embedded in concrete beams. As a result, the mainly reason that caused the degradation of GFRP bars embedded in concrete environments are the deterioration of glass fiber and the delamination at the interfacial.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.