Issue |
MATEC Web Conf.
Volume 140, 2017
2017 International Conference on Emerging Electronic Solutions for IoT (ICEESI 2017)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201714001018 | |
Published online | 11 December 2017 |
Performance Comparison of Energy Efficient Dynamic Transmission and Static Transmission Power in Static Mobility Node Wireless Ad-Hoc Network
ENAC, School of Computer and Communication Engineering (SCCE), University Malaysia Perlis (UniMAP) 02600, Arau, Perlis, Malaysia
* Corresponding author: ilahyah_92@yahoo.com
Transmission power optimization in Wireless Ad-Hoc Network is an important thing in order to minimize the energy consumption for effective utilization of the applications like Vehicle Ad-Hoc Network (VANET) applications. If one or more nodes in the wireless Ad-hoc network have little or no energy, then data transmission will be temporarily or permanently interrupted which might create a serious havoc in the Ad-hoc network especially during vital information transferred. This will, in turn, affect the performance of the entire network. Therefore transmission power control is one of the important research topics that needs to be focused in the wireless ad-hoc network in order to ensure effective energy consumption. Recently, we proposed a Dynamic Transmission Power algorithm to maintain network connectivity by adapting node’s transmission power based on the distance between the vehicles in VANET. Our research aims to design a dynamic transmission power that can minimize the rate of energy consumption. Hence, in order to develop the proposed method, prerequisite experiment need to be done. This paper investigates the energy saving efficiency of dynamic and static transmission range in static mobility node wireless ad-hoc network which is prerequisite experiments before further experiment on VANET can be carried on. The simulation results prove that dynamic transmission range gives better energy consumption compared to static transmission range, so it is worth it to carry out the subsequent experiments on VANET.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.