Issue |
MATEC Web Conf.
Volume 119, 2017
The Fifth International Multi-Conference on Engineering and Technology Innovation 2016 (IMETI 2016)
|
|
---|---|---|
Article Number | 01050 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201711901050 | |
Published online | 04 August 2017 |
Estimating reliability of degraded system based on the probability density evolution with multi-parameter
School of Reliability and System Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
a Corresponding author : jungle@buaa.edu.cn
System degradation was usually caused by multiple-parameter degradation. The assessment result of system reliability by universal generating function was low accurate when compared with the Monte Carlo simulation. And the probability density function of the system output performance cannot be got. So the reliability assessment method based on the probability density evolution with multi-parameter was presented for complexly degraded system. Firstly, the system output function was founded according to the transitive relation between component parameters and the system output performance. Then, the probability density evolution equation based on the probability conservation principle and the system output function was established. Furthermore, probability distribution characteristics of the system output performance was obtained by solving differential equation. Finally, the reliability of the degraded system was estimated. This method did not need to discrete the performance parameters and can establish continuous probability density function of the system output performance with high calculation efficiency and low cost. Numerical example shows that this method is applicable to evaluate the reliability of multi-parameter degraded system.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.