Issue |
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 6 | |
Section | Design and Study on Machinery | |
DOI | https://doi.org/10.1051/matecconf/20167701015 | |
Published online | 03 October 2016 |
Controller Design and Analysis of Spacecraft Automatic Levelling and Equalizing Hoist Device based on Hanging Point Adjustment
1 Beijing Institute of Spacecraft Environment Engineering, 100094 Beijing, China
2 Beijing Engineering Research Center of the Intelligent Assembly Technology and Equipment for Aerospace Product, 100094 Beijing, China
Spacecraft Automatic Levelling and Equalizing Hoist Device (SALEHD) is a kind of hoisting device developed for eccentric spacecraft level-adjusting, based on hanging point adjustment by utilizing XY-workbench. To make the device automatically adjust the spacecraft to be levelling, the controller for SALEHD was designed in this paper. Through geometry and mechanics analysis for SALEHD and the spacecraft, the mathematical model of the controller is established. And then, the link of adaptive control and the link of variable structure control were added into the controller to adapt the unknown parameter and eliminate the interference of support vehicle. The stability of the controller was analysed, through constructing Lyapunov energy function. It was proved that the controller system is asymptotically stable, and converged to origin that is equilibrium point. So the controller can be applied in SALEHD availably and safely.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.