Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06074
Number of page(s) 6
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. J. H. Bang; K.S. Suslick. Applications of Ultrasound to the Synthesis of Nanostructured Materials[J]. Adv. Mater., 2010, 22:1039–1059 [CrossRef] [PubMed]
  2. P. Sivakumar, P. Kumar Nayak, B. Markovsky, D. Aurbach, A. Gedanken. Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for Li-ion batteries[J]. Ultrason. Sonochem., 2015, 26: 332–339 [CrossRef]
  3. Y. R. Lee, S.M. Cho, W.S. Ahn, C.H. Lee, K.H. Lee, W.S. Cho. Facile synthesis of an IRMOF-3 membrane on porous Al2O3 substrate via a sonochemical route[J]. Micropor. Mesopor. Mat., 2015, 213: 161–168 [CrossRef]
  4. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch. A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite[J]. J. Ind. Eng. Chem., 2014, 20(6):3970–3974 [CrossRef]
  5. P. A.L. Lopes, M.B. Santos, A. J. S. Mascarenhas, L.A. Silva. Synthesis of CdS nano-spheres by a simple and fast sonochemical method at room temperature[J]. Mater. Lett., 2014, 136: 111–113 [CrossRef]
  6. Sambandam, J. J. Wu. Sonochemical synthesis of carbon supported Sn nanoparticles and its electrochemical application[J]. Ultrason. Sonochem., 2014, 21(6):1954–1957 [CrossRef]
  7. S. Zinatloo-Ajabshir, M. Salavati-Niasari. Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route[J]. J. Ind. Eng. Chem., 20(5), 2014: 3313–3319 [CrossRef]
  8. D.C. Nguyen, Q. K. Dinh, T. T. Hoa, D. Quang, P. H. Viet, T. D. Lam, N. D. Hoa, N. V. Hieu. Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor[J]. Mater. Res. Bull., 2015, 68:302–307 [CrossRef]
  9. X. Zhou, Y.M. Dong, N. Xu, S.Q. Liu, F. Chen. Template-free formation of spindle-like α-Fe2O3 microstructures by hydrothermal reduction[J]. Mater. Lett., 2015, 158: 285–289 [CrossRef]
  10. W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang. Hydrothermal synthesis of monodisperse porous cube, cake and spheroid-like α-Fe2O3 particles and their high gas-sensing properties[J]. Sensor Actuat B-Chem, 2015, 220: 243–254 [CrossRef]
  11. Y. Wang, Y.K. Sun, W.G. Li, W.D. Tian, A. Irini. High performance of nanoscaled Fe2O3 catalyzing UV-Fenton under neutral condition with a low stoichiometry of H2O2: Kinetic study and mechanism[J]. Chem. Eng. J., 2015, 267: 1–8 [CrossRef]
  12. S. Shivakumara, Tirupathi Rao Penki N. Munichandraiah. High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors[J]. Mater. Lett., 2014, 131:100–103 [CrossRef]
  13. K. Andreas, C. Ilkay, G. Michael. New benchmark for water photooxidation by nanostructured α-Fe2O3 films[J]. J. Am. Chem. Soc., 2006, 128(49): 15714–15721 [CrossRef] [PubMed]
  14. S.H. Sun, H. Zeng. Size-controlled synthesis of magnetite nanoparticles[J]. J. Am. Chem. Soc., 2002, 124(28):8204–5 [CrossRef]
  15. J.M. Ma, J.B. Lian, X.C. Duan, X.D. Liu, W.J. Zheng. α-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties[J]. J. Phys. Chem. C 2010, 114, 10671–10676. [CrossRef]