Open Access
MATEC Web of Conferences
Volume 57, 2016
4th International Conference on Advancements in Engineering & Technology (ICAET-2016)
Article Number 01017
Number of page(s) 4
Section Electronic & Electrical Engineering
Published online 11 May 2016
  1. M. Kovacevic, A. Acampora, Benefits of wavelength translation in all optical clear channel networks, IEEE J. Sel. Area Comm. 14 (1996) 69–79. [CrossRef]
  2. T. Durhuus, B. Mikkelson, C. Joergensen, S.L. Danielson, K.E. Stubkjaer, All optical wavelength conversion by semiconductor optical amplifiers, J. Lightwave Technol. 14 (1996) 942–953. [CrossRef]
  3. Surinder Singh, R.S. Kaler, All optical wavelength converters based on cross phase modulation in SOA-MZI configuration, Optik 118(2007)390-394. [CrossRef]
  4. D.D. Marcenac, D. Nesset, A.E. Kelly, D. Gavrilovic, 40 Gb/s transmission over 103 km of NDSF using polarization independent mid-span spectral inversion by four-wave mixing in a semiconductor optical amplifier, Electron. Lett. 34(1) (1998) 100–101. [CrossRef]
  5. S. Singh, R.S. Kaler, 20-Gb/s and higher bit rate optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier, J. Fiber Integr. Optics 26 (5) (2006) 295–308. [CrossRef]
  6. S. Singh, R.S. Kaler, Wide band optical wavelength converter based on four-wave mixing using optimized semiconductor optical amplifier, J. Fiber Integr. Optics 25 (3) (2007) 213–230. [CrossRef]
  7. D.I. Forsyth, M.J. Connelly, Dual semiconductor optical amplifier polarization independent wavelength conversion using four-wave mixing with optoelectronic feedback, in: Conference Proceedings – Lasers and Electro-Optics Society Annual Meeting, vol. 1, 2004, pp. 396–397.
  8. Farah Diana Mahad, Abu Sahmah M. Supa’at, Sevia Mahdaliza Idrus, David Forsyth, Comparative performance testing of SOA wavelength conversion techniques for future all-optical systems, Optik 124 (2013) 1254– 1259. [CrossRef]
  9. K. Obermann, S. Kindt, D. Breuer, K. Petermann, Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers, J. Lightwave Technol. 16 (1) (1998) 78–85. [CrossRef]
  10. S. Wu, X. Sun, M. Zhang, Characteristics of the wavelength converted signal in wavelength conversion based on cross-gain modulation, Int. J. Infrared Millimeter Waves 23 (2) (2002) 309–316. [CrossRef]
  11. Farah Diana Mahad, Abu Sahmah M. Supa’at, Sevia Mahdaliza Idrus, David Forsyth, Analyses of semiconductor optical amplifier (SOA) four-wave mixing (FWM) for future all-optical wavelength conversion, Optik 124 (2013) 1– 3. [CrossRef]
  12. M.Y. Jamroa, J.M. Seniora, M.S. Leesonb, G. Murtaza, Chirp in a wavelength converter based on a symmetrical-MZI employing SOAs, Opt. Commun. 209 (4–6) (2002) 321–328.
  13. A. D’Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall’Ara, G. Guekos, K.J. Vahala, Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval, IEEE Photon. Technol. Lett. 10 (7) (1998) 952–954. [CrossRef]
  14. D. Hsu, S. Lee, P. Gong, Y. Lin, S.S.W. Lee, M.C. Yuang, High efficiency wide-band SOA-based wavelength converters by using dual-pumped four-wave mixing and an assist beam, IEEE Photon. Technol. Lett. 16 (8) (2004) 1903–1905. [CrossRef]
  15. D.I. Forsyth, M.J. Connelly, Spectrum-sliced wavelength conversion using four wave mixing from a semiconductor optical amplifier, in: Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), Paper TuC3,( 2005).