Open Access
MATEC Web of Conferences
Volume 45, 2016
2016 7th International Conference on Mechatronics and Manufacturing (ICMM 2016)
Article Number 04008
Number of page(s) 6
Section Machinery manufacturing and automation
Published online 15 March 2016
  1. X.J. Zhu, H.J. Xu, A.L. Wang, et al. Research onthe cutting principle of new non-conventional technology — — Efficiency Ultrasonic Honing[J]. Key E M. 259-260: 640–643 (2004). [CrossRef]
  2. J.C. Jaeger, Moving sources of heat and the temperature at sliding contacts.[J]. Proceedings of the Royal Society of New South Wales. 76: 203 (1942).
  3. J.O. Outwater, Shaw M C. Surface temperature in grinding Trans ASME. 76: 203 (1952).
  4. R.S. Hahn On the nature of the grinding process[J]. Proceedings 3rd Machine Tool Design and Research Conference. 1: 129–154 (1962).
  5. N. Alagumurthi, K. Palaniradja, V. Soundararajan. Heat generation and heat transfer in cylindrical grinding process-a numerical study[J]. Int J Adv Manuf Technol. 34: 474–482 (2007). [CrossRef]
  6. Dahu Zhu, Beizhi Li, Han Ding. An improved grinding temperature model considering grain geometryand distribution[J]. Int J Adv Manuf Technol. 67: 1393–1406 (2013). [CrossRef]
  7. J.L. González-Santander. Analytic solution for maximum temperature during cut in and cut out in surface dry grinding[J]. Applied Mathematical Modelling. 10: 1–12. (2015).
  8. Zhu Xi Jing, Guo Ce, Wang Jian Qing. The pressure field radiated by cavitation bubble in the grinding area of power ultrasonic honing[J]. Adv Mat Res. 1027: 44–47 (2014). [CrossRef]
  9. N.R. Des Ruisseaux, R.D. Zerkle. Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling[J]. Journal of Heat Transfer. 92(3): 456–464 (1970). [CrossRef]
  10. Guodong Liu, Xijing Zhu, Ce Guo. Research on modelling and simulation of cavitation sound field in the grinding zone of the power ultrasonic honing [J]. ACTA ACUSTICA. 38(6): 663–668 (2013).