Issue |
MATEC Web Conf.
Volume 394, 2024
1st International Conference on Civil and Earthquake Engineering (ICCEE2023)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 6 | |
Section | Geotechnics | |
DOI | https://doi.org/10.1051/matecconf/202439401006 | |
Published online | 26 April 2024 |
Numerical modeling of open-ended piles
1 Badji Mokhtar-Annaba University, Department of Architecture, Annaba, Algeria
2 8 Mai 1945-Guelma University, Civil Engineering and Hydraulics Department
* Corresponding author: nasser.sekfali@univ-annaba.dz
Deep foundations are generally used when significant loads are applied, and the site conditions do not allow for the implementation of soil reinforcement processes. This research focuses on studying the behavior of piles in a frictional environment, used as foundations for offshore structures in dense sands, involving anchor depths and overloads significantly higher than those encountered in onshore applications. The bearing capacity of open-ended driven piles plays a crucial role in this study. Therefore, a series of tests were conducted in the literature on model piles in a calibration chamber, which is considered a tool for physical modeling, allowing for significant penetration of instrumented model piles under confinement conditions similar to those experienced by real piles. Emphasis is placed on predicting the ultimate load capacity of open-ended piles using numerical methods. Calculations were performed using the finite element code PLAXIS to numerically reproduce the same shear stresses as those measured on the model during various phases of the experiment. The approach aims to validate the documented experiments in the literature and compare the ultimate load capacity of an open-ended pile to that of a closed-ended pile. Our study is limited to the case of a single pile, subject to static and axial force. The results show that it is possible to achieve a good agreement between the experiment and the numerical modeling with a relatively simple model, provided that the soil parameters are chosen correctly and the interface stiffness is adequately simulated.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.