Issue |
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
|
|
---|---|---|
Article Number | 02028 | |
Number of page(s) | 6 | |
Section | Self-Healing Cementitious Materials | |
DOI | https://doi.org/10.1051/matecconf/202337802028 | |
Published online | 28 April 2023 |
Influencing factors to the capillary water uptake of (un)cracked cementitious materials
Magnel-Vandepitte Laboratory, Department of Structural Engineering and Building Materials, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 60, Campus Ardoyen, B-9052 Gent, Belgium
* Corresponding author: laurena.debrabandere@ugent.be
Capillary water absorption tests are widely used in uncracked cementitious materials to assess the quality and durability. Due to the easy execution of the test, it is also frequently used to assess the self-healing efficiency of self-healing concrete and mortar. It is established that the presence of a crack significantly increases the water uptake by a specimen. However, it is not known how the crack width, healing agents and mix composition influence the capillary water absorption. In this research, for cylindrical mortar specimens with four different crack widths, both a capillary water absorption test and water permeability were test were executed in order to investigate the relation between these two test methods. After the first round of testing, cracked specimens were healed manually with polyurethane and methyl methacrylate and the capillary absorption test was performed again to investigate the sensitivity of the test method to different degrees of crack healing. Furthermore, prismatic specimens were cast to investigate the influence of crack creation and geometry. It was found that the crack width does not have an influence on the capillary absorption rate. However, the crack width has a significant influence on the water flow through the crack. As expected, manual healing with polyurethane is better in comparison to the sealing of the crack mouth with methyl methacrylate.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.