Issue |
MATEC Web Conf.
Volume 369, 2022
40th Annual Conference - Meeting of the Departments of Fluid Mechanics and Thermomechanics in the connection with XXIII. International Scientific Conference - The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy (40th. MDFMT & XXIII. AEaNMiFMaE-2022)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
Section | Measurement and Calculation of State Variables in the Fluid Flow | |
DOI | https://doi.org/10.1051/matecconf/202236901006 | |
Published online | 04 November 2022 |
Numerical Study of Flow Field Characteristics in the Trachea During Growth of Human Upper Airways
Brno University of Technology, Faculty of Mechanical Engineering, Department of Thermodynamics and Environmental Engineering, Technicka 2986/2, 616 69, Brno, Czech Republic
* Corresponding author: elcner@fme.vutbr.cz
The development of organs in the human body does not end at birth. During the first five years of life, changes occur in the respiratory tract, not only in terms of its dimensions but also in the way it is used. Efforts to provide non-invasive treatment in the form of medical aerosols administered to children´s lungs during this period must be supported by knowledge of the flow pattern that significantly influences their transport and deposition. Research related to flow patterns in the adult human respiratory tract is quite widespread and the phenomena that occur during inhalation in different parts of the respiratory tract have been widely documented. In the case of the paediatric respiratory tract, research is relatively scarce due to the age of the patient and the desire to minimise interference with the paediatric organism. At the Brno University of Technology, we have the geometry of the airway of a ten-month-old infant, a scaled model of an adult to match the geometry of a five-year-old child based on scientific knowledge and also an adult model of the human respiratory tract. These geometries, together with knowledge of respiratory physiology were used to compare the changes in airflow behaviour that occur in the trachea during the first five years and compare it to fully developed adult human geometry. Computational Fluid Dynamics was used to investigate the model using a Large Eddy Simulation approach. The periods of life captured by the geometries differ not only in their dimensional difference but also in their approach to airway use. The impact of these differences has been captured in the paper.
Key words: Human upper airways / Flow pattern / CFD / LES
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.