Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 02068 | |
Number of page(s) | 12 | |
Section | Mathematical Science and Application | |
DOI | https://doi.org/10.1051/matecconf/202235502068 | |
Published online | 12 January 2022 |
Dynamic monitoring and evaluation of ecological restoration in mining area based on GNSS+RS technology
Shengli Oilfield Technology Inspection Center, SINOPEC, 257000, Dongying, Shandong, China
* Corresponding author: chengyayu12345@163.com
The continuous development of mineral resources is increasingly damaging the ecological environment, so it is of great significance to ecological restoration and dynamic monitoring of the mining area. In this paper, dynamic monitoring and evaluation method of ecological restoration in the mining area are proposed, which integrates GNSS + RS (Global Navigation Satellite System + Remote Sensing) technology. According to the Precipitable Water Vapor (PWV) retrieved by GNSS and NDVI (Normalized Vegetation Index) can monitor the ecological environment and introduce machine learning to improve the accuracy of the model. The dynamic assessment of ecological restoration was carried out by using temperature, rainfall, NPP (Net Primary Productivity), NDVI and PWV. The results show that: (1) the modeling effect of machine learning is better than that of the least square regression. (2) The comprehensive ecological evaluation index proposed can better reflect the ecological situation of the mining area. Therefore, the environmental monitoring and assessment of mining area based on GNNS + RS technology proposed in this paper have important reference significance.
Key words: GNSS / RS / Ecological restoration / Comprehensive assessment
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.