Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 6 | |
Section | Investigation in Physics and Materials | |
DOI | https://doi.org/10.1051/matecconf/202235501024 | |
Published online | 12 January 2022 |
Microwave dielectric properties of Na+-substituted CaMg0.9Li0.2Si2O6 ceramics
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
2 Yangtze River Delta Research Institute of UESTC (Huzhou), Huzhou, 313000, China
* Corresponding author: fangyi_huang@163.com
Ceramics with low dielectric constant are widely used in high frequency substrates. The low temperature sintered CaMg0.9-xNa2xLi0.2Si2O6(x = 0–0.05 and 0.1) ceramics with low dielectric constant and dielectric loss were prepared by the traditional solid-state reaction method, with 0.5wt%LBSCA additive. The XRD patterns of the samples were obtained by X-ray diffraction and it was found that there were three ceramic components, CaMgSi2O6, CaSiO3 and Na2MgSiO4, which indicated that the experimental sample was a multiphase ceramic system. Through the trend of bulk density as functions of the content of substitution and the change of SEM morphology, it could be found that appropriate amount of Na+ substitution can promote the grain growing and the densification of ceramics. Results demonstrated that both the Q × f and εr were relevant to bulk density and the second phase. The τf was also affected by the second phase to some extent. In particular, the ceramics sintered at 925 °C for 3h possessed the desirable microwave dielectric properties for LTCC application: εr = 7.03, Q × f = 17,956 GHz, and τf= −79 ppm/°C.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.