Issue |
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
|
|
---|---|---|
Article Number | 00039 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/matecconf/202134700039 | |
Published online | 23 November 2021 |
Numerical investigation of the hydrocyclone vortex finder depth on separation efficiency
University of Johannesburg, Mechanical & Industrial Engineering Technology Department, Doornfontein Campus, Johannesburg, South Africa
* Lesiba Mokonyama: Lesiba.k.mokonyama@gmail.com
Hydrocyclones are devices used in numerous chemicals, food, and mineral-related industrial sectors for the separation of fine particles. A d50 mm hydrocyclone was modelled with the use of the Computational fluid dynamics (CFD) simulation, ANSYS® Fluent 2021 R1. The vortex finder depth was varied from 20 mm, 30 mm, and 35 mm to observe the effects of pressure drop and separation efficiency from a varied vortex finder depth and characteristics of the air core. The numerical methods validated the results observed from different parameters such as volume fraction characteristics based on CFD simulations. The tangential and axial velocities increased as the vortex finder length increased. It was found that as the depth of the vortex finder is increased, particle re-entrainment time in the underflow stream increases, and separation efficiency improved.
Key words: Computational Fluid Dynamics / Hydrocyclone / Pressure Drop / Vortex Finder
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.