Issue |
MATEC Web Conf.
Volume 283, 2019
The 2nd Franco-Chinese Acoustic Conference (FCAC 2018)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 4 | |
Section | Acoustic and Elastic Wave Scattering | |
DOI | https://doi.org/10.1051/matecconf/201928303002 | |
Published online | 28 June 2019 |
Acoustic scattering from a stiffened finite cylindrical shell with external rings
1 Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, 200240, Shanghai, China
2 State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
* Corresponding author: fanjun@sjtu.edu.cn
Studying the interaction of sound with cylindrical shells immersed in water is essential and helpful to improving underwater target detection and classification algorithms. Elastic cylindrical shells often occur as part of double-layered shell and have been widely used in marine and aerospace area. Acoustic waves are easy to be transmitted through the outer shell to the interior especially at low frequencies, thus directly being scattered by the inner shell and the rings in water between double-layered shells. Therefore, the externally ring-stiffened cylindrical shell is investigated in this paper. An experiment was conducted that measured the acoustic scattering. A hybrid 2-D/3-D finite-element modelling technique is employed to numerically calculate the scattering characteristics. Good qualitative agreement is found between numerical calculations and experimental measurement. An approximate analytical expression is given explicitly to identify the Bragg wave trajectories in the frequency-angle spectrum. It also has been shown that the rings not only affect the dynamic response of shell and indirectly influence the exterior scattered field, but also become direct acoustic scatterers in water and increase the target cross section especially at oblique incidence.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.