Issue |
MATEC Web Conf.
Volume 282, 2019
4th Central European Symposium on Building Physics (CESBP 2019)
|
|
---|---|---|
Article Number | 02015 | |
Number of page(s) | 7 | |
Section | Regular Papers | |
DOI | https://doi.org/10.1051/matecconf/201928202015 | |
Published online | 06 September 2019 |
On the feasibility of watertight face-sealed window-wall interfaces
Ghent University, Faculty of Engineering and Architecture, Building Physics Group, Belgium
* Corresponding author: stephanie.vanlinden@ugent.be
Watertightness is still a major source of concern in the performance of the building envelope. Even very small deficiencies can cause a significant amount of water leakage which may result in structural degradation or malfunctioning of the insulation. The risk of water infiltration is highest at joints between different building components and in particular at the window-wall interface due to the complexity of these joints. This paper focuses on the performance of different solutions to ensure the watertightness of the window-wall interface, e.g. self-adhesive foils, liquid applied coatings, prefabricated frames, self-expanding sealing strips. The performance of these solutions is evaluated for different wall assemblies, i.e. ETICS, masonry, structural insulated panels and wood-frame construction. Laboratory experiments were conducted on a full-scale test setup with a window of 1,01 m high and 0,56 m wide. Test results showed that it is not evident to obtain watertight face-sealed window-wall interfaces without an additional airtight layer or drainage possibilities. Water ingress was often recorded at lower pressure differences.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.