Issue |
MATEC Web Conf.
Volume 276, 2019
International Conference on Advances in Civil and Environmental Engineering (ICAnCEE 2018)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 8 | |
Section | Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201927601009 | |
Published online | 15 March 2019 |
Finite element analysis of the Circular Double Skin Tubular Concrete (DSTC) under concentric loading
1 Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
2 School of Civil and Environmental Engineering, The University of New South Wales, Sydney NSW, Australia
* Corresponding author: piscesa@ce.its.ac.id
This paper presents a numerical investigation on the behaviour of circular double-skin tubular concrete (DSTC) under concentric loading. The numerical analysis is carried out using a three-dimensional non-linear finite element package (3D-NLFEA). In DSTC specimen, the concrete is enclosed by FRP wraps at the outer tube and circular hollow steel (CHS) at the inner tube. The concrete constitutive model is based on the authors developed plasticity-fracture model which uses a non-constant plastic dilation rate for modelling concrete dilation under compression. The nonlinear buckling analysis is included in the analysis. Random material imperfection is used to induced asymmetric failure pattern. Mohr-Coulomb friction model is used to simulate the contact behaviour between concrete and CHS elements. The results from the FEA are compared with the available experimental results. From the comparison, it can be concluded that the use of the authors plasticity-fracture model is in good agreement with the test results.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.