Issue |
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 6 | |
Section | Bio-composite Materials and Structures | |
DOI | https://doi.org/10.1051/matecconf/201927501013 | |
Published online | 13 March 2019 |
Comparison of Bonding Performance Between Plywood and Laminated Veneer Lumber Induced by High Voltage Electrostatic Field.
1 College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
2 LERMAB, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-lès-Nancy 54506, France
* Corresponding author: luxiaoning-nfu@126.com
High voltage electrostatic field (HVEF) was applied in order to improve wood surface characteristics, bonding and mechanical properties of wood composites. Masson pine (Pinus massoniana Lamp.) plywood and laminated veneer lumber (LVL) were selected in this study. Surface characteristics were conducted by the electron spin resonance (ESR) and X-ray photoelectron spectra (XPS). Bonding interphase and mechanical properties were investigated by fluorescence microscopy and vertical density profile (VDP), bonding strength, wood failure ratio, MOE and MOR. The results indicated that more increments were obtained in free radicals, O/C ratios and C2-C4 components. This is because electrons broke more wood chemical groups and new ions occurred among wood surface under HVEF. Significantly decreased PF adhesive penetration depth (PD) and increased density at bonding interphase was achieved in HVEF treated composites. More decrease of PD and increment of density were observed in plywood than that of LVL. This was attributed to cross linked wood fibers among bonding interphase in plywood. Mechanical properties of bonding strength, wood failure ratio, MOE and MOR were significantly increased under HVEF treatment both for two composites. Higher bonding strength, MOE and MOR were obtained in plywood and their increments were as 98.53%, 33.33%, 18.55% and 12.72%.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.