Issue |
MATEC Web Conf.
Volume 252, 2019
III International Conference of Computational Methods in Engineering Science (CMES’18)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 6 | |
Section | Computational Artificial Intelligence | |
DOI | https://doi.org/10.1051/matecconf/201925203014 | |
Published online | 14 January 2019 |
Mobile system for road sign detection and recognition with template matching
Silesian University of Technology, Institute of Informatics, Akademicka 16, 44-100 Gliwice, Poland
* Corresponding author: michal.mackowski@polsl.pl
This paper explores the effective approach to road sign detection and recognition based on mobile devices. Detecting and recognising road signs is a challenging matter because of different shapes, complex background and irregular sign illumination. The main goal of the system is to assist drivers by warning them about the existence of road signs to increase safety during driving. In this paper, the system for detection and recognition of road signs was implemented and tested with the use of Open Source Computer Vision Library (OpenCV). The system consists of two parts. The first part is the detection stage, which is used to detect the signs from the whole image frame and includes the modules: data-image acquisition, image pre-processing and sign detection. During this stage, the impact of Canny edge detector and Hough transform parameters on the quality-level of sign detection was tested. The second part is the recognition stage, whose role is to match the detected object with a priori models of signs in the dataset. In the research, the authors also compared the influence of various image processing algorithms parameters to the time of road sign recognition. The discussion part answers also the question whether the mobile system (smartphone) is robust enough to detect and recognise road sings in real time.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.