Issue |
MATEC Web Conf.
Volume 249, 2018
2018 5th International Conference on Mechanical, Materials and Manufacturing (ICMMM 2018)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 5 | |
Section | Mechanical Engineering and Digital Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201824903004 | |
Published online | 10 December 2018 |
Tool path generation for sculptured surfaces with 4-axis machining
Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849.
Sculpted surfaces are widely used in engineering applications in industries like aerospace, automotive and medical. Commonly, these types of surfaces are manufactured by the process of 5-axis CNC machining. 5-axis machining improves the effectiveness and reduction in machining times compared to the 3-axis process, but also increases the complexity of the operations. This paper presents a four-axis toolpath generation gouging free methodology as an alternative to the five-axis machining to reduce the complexity of the process, maintaining similar benefits respect to conventional three-axis machining. Rolling ball method is first applied to compute the most suitable tool for the surface and prevent gouging. A process procedure is the carried out to optimize the tool fixed position and compute tool location at each cutter contact point of the surface. The results show the effectiveness of the method in terms of reducing machining time and maintaining similar surface finishing compared with three-axis machining. The method can be used as a cost-effective option for multi-axis machining.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.