Issue |
MATEC Web Conf.
Volume 225, 2018
UTP-UMP-VIT Symposium on Energy Systems 2018 (SES 2018)
|
|
---|---|---|
Article Number | 04023 | |
Number of page(s) | 9 | |
Section | Renewable and Non-renewable Energy Resources and Power Generation | |
DOI | https://doi.org/10.1051/matecconf/201822504023 | |
Published online | 05 November 2018 |
Performance analysis of a Copper Indium Gallium Selenide (CIGS) based Photovoltaic Thermal (PV/T) water collector
1
Energy Sustainability Focus Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia.
2
Faculty of Mechanical Engineering, Universiti Teknologi Petronas, 32610, Tronoh, Perak, Malaysia.
* Corresponding author: mfirdausb@ump.edu.my
This paper intended to investigate the performance of Copper Indium Gallium Selenide (CIGS) based Photovoltaic Thermal (PV/T) water collector under different operating condition. A CIGS photovoltaic with nominal power 65 W combined with an unglazed flat plate solar thermal water collector with effective area of 2 m was investigated. The performance was tested under different mass flow rates of flowing water which are 0.005 kg/s, 0.020 kg/s and 0.030 kg/s. For the mass flow rate of 0.030 kg/s, data was taken at different Peak Sun Hour (PSH) condition from 4.2 to 5.7. It was found that both electrical and thermal efficiency increased when the mass flow rate increased. Both electrical and thermal performance increased at the higher mass flow rate with the most efficient flow rate was 0.030 kg/s. The highest electrical and thermal efficiency was 4% and 23% respectively. In addition, when PSH increased, the electrical and thermal efficiency increased. However, at the PSH of 5.7 both efficiency slightly decreased. Further study on higher mass flow rate is necessary as the performance is not always proportional with mass flow rate. In this paper the value of the PSH was only limited to 4 points, which need to be further investigated for more values to clarify the correlation with the PV/T performance.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.